

LINKED DATA IN THE

ENTERPRISE

How information enlightenment reduces

the cost of IT-systems by orders of

magnitude

Second Edition

With a Foreword by Irene Polikoff

ii

Material Subject to Creative Commons License:

LINKED DATA IN THE ENTERPRISE. How information enlightenment

reduces the cost of IT-systems by orders of magnitude. Second

Edition. With a foreword by Irene Polikoff

A Taxonic whitepaper, by Taxonic B.V., Utrecht, The Netherlands

http://taxonic.com

Copyright 2013, 2014 © by Jan Voskuil

This work is licensed under the Creative Commons Attribution-NonCommer-

cial-NoDerivs 3.0 Unported License. You are free to copy, distribute and

transmit the work, under the following conditions: you must attribute the

work mentioning the author and Taxonic; you may not use this work for

commercial purposes; you may not alter or transform this work.

For questions regarding usage, please contact info@taxonic.com.

The use of general descriptive names, registered names, trademarks, etc. in

this publication does not imply, even in the absence of a specific statement,

that such names are exempt from the relevant protective laws and

regulations and therefore free for general use.

iii

Foreword by Irene Polikoff

In the beginning, software processing was about automating paper-based

business processes. The processes modeled were reasonably static and the

data often fit into the tabular format. Hugely successful, this approach

resulted in the digitization of immense amounts of information creating a

plethora of siloed data sources.

As data grew, understanding the connections between these disparate sources

became as important or, arguably, even more important than each source

alone. Enabling connectivity requires a method for resolving identity and

meaning of information elements across the sources. Today, we are

increasingly interested in new types of data that are more diverse in structure

and less predictable in nature. We capture interrelated information about all

things happening around us and have to implement systems that are

considerably more dynamic than those of the past. Each year, the speed of

change in business, and in software systems that support everything we do,

accelerates. Using established traditional technologies to answer these needs

has been driving up the cost and complexity of enterprise IT systems.

These drivers have led to the rise of new technologies, referred to as NoSQL

(Not Only SQL). While they are called schema-less, this does not literally

mean that the data they manage has no structure. It means that the data is

stored in containers that are much more fluid than the relational model

permits. This is useful when data lacks uniformity. It is also critical when its

structure and content can change unpredictably and frequently. For example,

as a result of new legislation, new business initiatives or new policies.

The NoSQL technology landscape in some way still resembles the “wild west”

of the past with many proprietary approaches that have evolved from the

initial implementations by the web giants like Google, Facebook and Amazon.

At the same time, relevant standards have been developed by the W3C

(World Wide Web) consortium. They offer a standard approach for describing

rich and flexible data models and for querying the model and data alike.

Importantly, they also offer a way to uniquely identify, connect and access

data across many diverse sources. This standards-based approach is

becoming known as “Linked Data” as it enables the interconnection of rich

networks of data. A growing number of standards-compliant products offer a

interoperable alternative to using proprietary technologies that is much more

‘future-proof’ in terms of enabling unanticipated changes, additions and

dynamic interconnections among data sources

Jan Voskuil’s paper starts with an excellent introduction to the concepts and

technologies involved in turning enterprise data into Linked Data. Jan follows

iv

this introduction by talking about how one may build applications that take

advantage of Linked Data. He describes real examples of how this approach

reduces the cost of data integration and implementation of agile and flexible

systems needed to support modern enterprises. I am certain that reading the

paper will help you gain key insights into using Linked Data technologies to

achieve the promise of enterprise interoperability.

Irene Polikoff

CEO and co-founder of TopQuadrant

TopQuadrant was founded in 2001 and is a leading world-wide vendor of

enterprise metadata management and data integration solutions based on

Linked Data and semantic technologies.

v

Contents
Foreword by Irene Polikoff .. iii

LINKED DATA: A MANAGEMENT SUMMARY .. 1

Referential Semantics .. 1

Global Identity .. 2

Representing Facts as Triples .. 3

Tripleware .. 4

Literals and Tabular Data ... 5

Knowledge Models and Deductions .. 6

Vocabularies for Enriching Data with Metadata .. 7

Two Boxes and Some Philosophical Questions ... 8

Linked Data in 147 Words .. 9

THE PROBLEM WITH RELATIONAL DATABASES .. 9

Structural Commitment to Capture Meaning ... 9

Difficulties Resulting From Structural Commitment 11

The Relational Database Paradox ... 12

THE PARADIGMS COMPARED ... 12

Similarities ... 13

Differences ... 14

A REAL WORLD BUSINESS CASE .. 15

Introducing Authentic Data Sources ... 15

Cost Reduction through Linked Data .. 16

Realizing the Business Case: Recent Developments 16

Reflections ... 18

MAKING THE PLAN COME TOGETHER .. 19

Acknowledgments .. 21

 ... 22

1

Adjusting IT-systems often leads to destructive change. In a changing

environment, this is the source of problems and massive cost. Each

piece of new legislation, each change in policy results in a cascade of

highly expensive modifications. The inertia of IT-systems might be

significantly alleviated with the uptake of Linked Data. This will

increasingly enable creative change. IT-systems will not only be

modifiable at low cost, organizations will have the ability to leverage

their creativity by “playing” with their systems and discover new ways of

creating value. This is a dream that certainly will be reality soon.

Linked Data is a method of storing, managing and sharing data that funda-

mentally differs from the classic methods: the relational database and SOA-

based web services. The technology is not new as such — the first iteration of

some of the key underlying standards were established by the W3C consortium

ten years ago. Developments in supporting tools and a growing uptake have

resulted in a number of remarkable successes. In this paper we answer the

question as to how Linked Data will reduce the cost of modifying IT-systems and

data integration.

The intended audience is anyone with an interest in the cost of IT and some

curiosity in the above question. We won’t go into much detail — let alone

technical detail. We explain just enough to understand the answer at the

conceptual level.

We start with a short description of how Linked Data works. Next, we discuss

why relational databases are a major source of inertia and cost. We then contrast

Linked Data and relational databases to bring out the difference and understand

how Linked Data makes creative change a possibility. We discuss some exciting

real world business cases, primarily in the domain of public administration in the

Netherlands — where cost of IT is a perennial issue. In the final chapter, we

draw some conclusions.

LINKED DATA: A MANAGEMENT SUMMARY

Referential Semantics

The essential difference between Linked Data and relational databases is the way

they handle the meaning of data. So that is where our exposé must start.

2

The question as to what the meaning of a symbol really is has puzzled

philosophers, linguists and scientists through the millennia. One of the simplest

theories of meaning is called referential semantics: meaning is what is referred

to. Thus, if you know what the phrases ‘James Bond’ and ‘MI6’ refer to, and you

know what the phrase ‘works for’ refers to, then you know what “James Bond

works for MI6” means.

For this theory to work it is crucial that each symbol uniquely refers to a thing in

our world, namely, James Bond, MI6 and the relation of working for,

respectively. The relation between symbol and thing in the world does not need

to be unique the other way around. Put differently, you may refer to the same

thing using different symbols. Once you know two symbols refer to the same

thing, you can start making inferences. Thus, if you know that the phrase ‘007’

refers to the same thing as ‘James Bond’, you can, based on the previous

statement, draw the conclusion that “007 works for MI6”.

This is an elegant and simple theory of meaning. The theory is too simplistic to

account for many of the subtleties of human language. However, it provides a

solid basis for the purpose of managing data. It treats the meaning of data in a

much more effective way than other methods. It is precisely this theory of

referential semantics that underpins Linked Data.

Global Identity

The first step in developing a method for managing data based on referential

semantics is finding a way to uniquely refer to things. This is, at first blush, not

an easy task. In the world of databases, uniqueness of identification is localized:

each row in each table has a unique key value. But this kind of uniqueness is

defined in terms of the table in which it occurs. In another table, in another

database, the same number may identify something completely different. In

other words, identity is locally defined, and the meaning of the key differs across

contexts. This will not do.

So, we need globally unique symbols. The problem of global uniqueness has

been solved many times. Before the Web, this most often took the form of a

global authority handing out IDs. An example is the ISBN-number assigned to

books. With the advent of the Web, however, a broadly used, systematic method

has emerged.

The Web rests on a decentralized way of defining global uniqueness. Each

domain has a unique owner, who delegates ownership of subdomains to their

respective owners, and so forth. In any case, we can be sure that the (fictitious)

email address james.bond@mi6.gov.uk uniquely refers to one and only one

mailto:james.bond@mi6.gov.uk

3

mailbox. Of course, there could be aliases referring to the same mailbox, such as

007@mi6.gov.uk. Email addresses are a special case of Unique Resource

Identifiers, or URI for short. Another special case of a URI is the web address or

URL, which locates a resource such as a web page on the Web. The fundamental

insight here is that a URI is a globally unique symbol that can be used to refer to

a unique thing.

In Linked Data, we call this thing a “resource”. Everything is a resource: James

Bond (a.k.a. 007), MI6, and the relation we call “works for”, the USA, the milky

way, the gene sequence characterizing the fruit fly, the fruit fly itself, its

fondness of fruit, the girl next door and her being your neighbor — to mention

just some examples. It may strike you as odd to use the term ‘resource’ in this

way, but that’s just the way it is. Internet pages and mailboxes are also

resources, which happen to reside on the Web, but from the perspective of

Linked Data these special cases are not especially interesting. The point is that

we now have a mechanism to define globally unique symbols to uniquely refer to

resources, that is, to things in the world.

Representing Facts as Triples

Now that we have URIs to refer to resources, we can use them to represent

facts. Suppose we define the URI http://corporate-data.mi6.gov.uk/JamesBond

to uniquely refer to James Bond. We could only “mint” this URI in this way if we

were given the mandate to do so by the owner of the domain — let’s suppose

that we are, and that we mint similar URIs to refer to ‘work for’ and ‘MI6’.

Among web technologists it is common to abbreviate the first part of a URI (up

to the rightmost slash) using some convenient namespace prefix — we will use

“sis:” for this purpose. We could then represent the facts that James Bond and

Moneypenny work for MI6 as follows:

 sis:JamesBond sis:worksFor sis:MI6

 sis:Moneypenny sis:worksFor sis:MI6

Each of these two assertions consists of exactly three URIs: a subject, a

predicate, and an object. Such an assertion is called a triple.

Triples are stored in triple stores. One can think of a triple store as a table with

three columns. From a technical perspective, that’s all there is in the way of

structure. By atomizing all information into factoids of this type, the number of

triples in a triple store will soon become large: hundreds of millions of triples in a

triple store is the normal situation. Enterprise-grade triple stores are expressly

designed to deal with such numbers.

mailto:007@mi6.gov.uk
http://corporate-data.mi6.gov.uk/JamesBond

4

To work with triples, components are needed on top of the triple store.

Collectively, these components are often called “semantic middleware” — in this

paper, we call it tripleware for short. These components do a variety of things:

enabling a triple store to be queried over the Web, supporting federated

querying, making different kinds of inferences, and much more. Importantly,

there is tripleware available for combining Linked Data and relational databases,

so that these can be used alongside each other. It is even possible to make a

relational database look like a triple store to the outside world. In the next

section, we summarize four central tasks that tripleware can perform.

Tripleware

Tripleware can do a number of things. First of all, it allows users (and user

programs) to create, retrieve, and delete triples in a triple store. Second, it

provides a service for querying. Like a traditional database, it answers questions

by assembling query results, using a standardized query language. In the

traditional database world, this is SQL. With Linked Data, it is called SPARQL.

SPARQL has the additional function of defining an interaction protocol, so that a

triple store is said to present a “SPARQL-Endpoint” on the Web. Clients can fire

queries at the endpoint and receive the answer.

The third and fourth things tripleware can do are drawing inferences and federate

data stores. Let us discuss these in combination. Since the structure of a triple is

so trivial, one can write a SPARQL–query and query multiple triple stores on the

Web simultaneously. Suppose that we have a fan club that hosts a triple store in

its own domain that contains the following triples, where we use “fc:” as the

namespace abbreviation for the fan club’s domain:

 fc:007 fc:hasEliminated fc:Goldfinger

 fc:007 owl:sameAs sis:JamesBond

The second assertion in the triple store is interesting in that it contains two URIs

defined in a domain other than “fc”. One of these is the URI referring to James

Bond that we minted in the “official” (though fictional) SIS-domain. Since a URI

is globally unique (and ownership is explicit), its meaning does not depend on

context: the URI can be used anywhere and be part of a triple in any triple store

— it always means the same, no matter in which context it occurs.

The other “alien” URI in the assertion is owl:sameAs — a URI that the W3C

standards committee has minted as referring to the relation of, well, being the

same resource as. The triple uses this predicate to assert that the URIs

sis:JamesBond and fc:007 refer to the same resource. Provided we have an

internet connection to both triple stores, we can now fire off SPARQL-queries and

5

receive the following triples back as answers. A query that yields the first of

these is for instance “return all triples of which sis:JamesBond is the subject and

fc:hasEliminated is the predicate.” A similar query yields the second:

 sis:JamesBond fc:hasEliminated fc:Goldfinger

 fc:007 sis:worksFor sis:MI6

The two triples shown here are not as such present in either one of the two triple

stores. They can be inferred, however, based on the assertion that the URIs

sis:JamesBond and fc:007 refer to the same resource. Deducing new facts from

existing ones based on knowing that two expressions have identical references

may seem hardly impressive. SQL-experts could certainly achieve similar results.

The difference is, however, that true inference engines simply apply general rules

of logic without further instruction. We will briefly revisit inferencing below.

This example shows that it is utterly simple to combine triples from different

sources. The simple, standardized structure of triples makes them technically

interoperable by nature. The principle of combining URIs from different domains

in one triple makes datasets interoperable at the semantic level. The example

shows that this capability can be leveraged to issue federated queries against

multiple triple stores on the Web. While the possibility of federated queries poses

new challenges — for instance, with respect to performance —, the power to

combine data from different sources constitutes a quantum leap. Ultimately, as

we will see, it is this ability that soon will make IT-systems responsive to change.

We now almost know enough to understand how Linked Data will lead to more

adaptable IT-systems. Yet, there are two additional points that warrant

discussion here. We do so in the next two paragraphs.

Literals and Tabular Data

The first point is that the object in a triple can be what is called a literal — that

is, a data value that is not a URI, but just a string of symbols. Just three

examples are the following:1

 sis:JamesBond sis:dateOfBirth ”1920-11-11”

 sis:Moneypenny sis:dateOfBirth ”1933-12-21”

1 The source of Bond’s date of birth is Wikipedia, which also offers an alternative view.

Moneypenny’s date and place of birth are made up by the present author by way of

example.

6

 sis:Moneypenny sis:placeOfBirth “London”

It makes sense that a date is just a literal: there seems little point in defining a

— globally unique — URI that uniquely refers to it. With Moneypenny’s place of

birth, this is perhaps not so clear. It may be quite useful to have a URI for

London. While there is no obligation to do so, treating the city as a literal instead

of a resource does have consequences. For instance, we can’t say things about

London in our triple store: literals can only be the object, not the subject in a

triple. Choices such as this are at the heart of the modeling process with Linked

Data.

The good news is that the use of literals gives us a simple recipe for translating

back and forth between Linked Data and tabular data. Consider the following

table:

To translate this to Linked Data, we define a URI for each row based on the cell

containing the row’s ID. Next we define a URI for each column header, and treat

the values in the corresponding cells as literals. Applying this to the table yields

the three above triples.

The recipe is presented here in a simplified form limited to literals, but the

bottom line is: a translation is always possible. As a result, using tripleware,

relational data can be accessed as if it was stored in RDF. Thus, we can leverage

relational data in Linked Data architectures without having to migrate all of it into

triple stores. Conversely, using SPARQL, we can query our triple stores and

generate the above table as a tabular view on the data contained in them, and

export the data to a spreadsheet or relational database.

Knowledge Models and Deductions

The second point is that Linked Data has standards that allow us to say abstract,

logical things about the information in a triple store. The most basic of the Linked

Data standards is RDF, an abbreviation for Resource Description Framework,

most of which has been presented in the previous paragraphs.

On top of RDF, there is a number of additional W3C standards, notably RDFS

(“RDF Schema”), OWL (“Web Ontology Language”), and SPIN (“SPARQL

7

Inferencing Notation”). SPIN is still in the process of being ratified but already

widely used. These additional standards cater for assertions about class

membership, cardinality, relationships between values of properties and other

such things. For example, we could say:

sis:Moneypenny rdf:type sis:Secretary

sis:Secretary rdfs:subClassOf sis:Staff

From this, we can query for Moneypenny as someone who is of type secretary or

(through the subclass statement) as someone of type staff, even though the

latter is not as such asserted in the triple store. Importantly, the additional

standards do not add extra technical structure. Everything we say in Linked Data

is said in the form of triples and can be added to the triple store. Taken together,

RDF, RDFS, OWL and SPIN constitute an extremely powerful tool set to create

knowledge models.

Suppose you cultivate vegetables and you maintain a database of which crops

are cultivated where and sold to customers in which areas. Instead of referring to

each kind of crop using a symbol made up by your IT-department — such as the

strings “spinach” and “Toulouse” —, you could instruct them to use URIs defined

by some authority in a published list. Such lists are called taxonomies or

vocabularies. This would be an important step towards making your data

interoperable with the outside world. If the vocabularies maintained by the

authority (or plural, vocabularies maintained by different authorities) contains

enough logic, fine grained and useful deductions can be made by combining your

triples with knowledge from outside: management information on steroids. The

marketing department could, without any IT-effort, ask which crops are most

often bought by customers living in a place (all this information is in your

organization’s data sources) such that that place is known to be a city with more

than 500,000 inhabitants (this information could be obtained at query time from,

for instance, DBPedia, the public triple store based on Wikipedia).

In fact, Linked Data is broadly used for linking different sources for precisely that

purpose. Before closing the chapter on Linked Data, let us briefly expand on that

theme.

Vocabularies for Enriching Data with Metadata

In some areas, such as the life sciences and pharmaceuticals, vocabulary usage

along the lines just mentioned is massive and done at Web scale, with hundreds

of ontologies containing millions and millions of concepts and relations. The

concepts in these ontologies are used to annotate research data, and to answer

questions such as “which gene sequences occur in which species”, or “which

8

markers are associated with which cancers”. Since the amount of concepts is so

vast, it is a practical necessity that the vocabularies are distributed over different

triple stores and are maintained by different organizations.

Normal operation of entire segments of the industry and research community —

such as genomics or cancer research— would simply be unthinkable without this

technology. In fact, while the rest of us are pondering the introduction of Linked

Data, folks in the life sciences domain have started developing the next

generation of this technology: platforms for brokering between hundreds of

ontologies. The European OntoCAT-project is an interesting and widely publicized

example of this.2

A growing number of ontologies and vocabularies for enriching data becomes

available in other domains too. A well-known and very early example is Dublin

Core, which provides an RDF-vocabulary for describing publications and media

files. By using the URI dc:creator to indicate the author property, the description

of your media file becomes interoperable at Web scale. Because its meaning

remains constant in different contexts, the URI is an ideal vehicle to carry

metadata information used by many different organizations to share data.

Two Boxes and Some Philosophical Questions

The philosopher and logician Ludwig Wittgenstein (1889-1951) made a point of

distinguishing expressions that say something about the world from those about

the language we use. For instance, when I say that the table is round, I make a

factual assertion: its truth depends on the world. Conversely, when I say that a

round object has no corners, my statement is about how to use the concepts

“round” and “corner.” Wittgenstein called such expressions logical or

grammatical statements.

In the late 1990’s, the nascent Linked Data community distinguished the so-

called “A-box” (“assertion box”) and “T-Box” (“terminology box”). The triple

representing that Moneypenny works for MI6 would be an A-box assertion, while

the one that says that secretaries form a subclass of staff is a T-box assertion.

The first is about the world, the latter is about structuring our conceptualization

of it: it is a “grammatical” statement.

2 See the OntoCAT website. This article on Biomedcentral provides a description: Tomasz

Adamusiak et al (2013). “OntoCAT -- simple ontology search and integration in Java, R

and REST/JavaScript”.

http://www.ontocat.org/
http://www.biomedcentral.com/1471-2105/12/218/

9

Nowadays, many consider these terms artificial. For one thing, the only

difference between the triples is semantic — the triples can live alongside each

other in the same triple store, blurring the distinction. For another, the

distinction can be quite subtle. According to the latest insights in phylogenetics a

bird is a kind of reptile. Where would this statement fit? This is an invitation to

explore fascinating and rewarding philosophical questions, but one that leads

away from practical issues in a business setting.

Yet, it is useful to remember two things. First, with Linked Data there is no

technical difference between data and metadata, only a subtle semantic one.

Second, it is common and very useful to use URIs from external ontologies to

enrich your data. Before moving on, let us take stock of what we have.

Linked Data in 147 Words

We started out with the theory of referential semantics, according to which we

know what a symbol means if we know what resource the symbol refers to. We

saw how URIs can be used as globally unique symbols that uniquely refer to a

resource. Their meaning remains constant across different contexts. URIs are

owned by whoever owns the URI’s domain. Some resources are things, other

resources are relations. Based on this, we defined the notion of triple. Triples are

stored in triple stores. Triple stores are easy to combine because they all work

with the same simple, standardized, atomic data structure. A number of W3C-

standards allow us to make logical assertions about resources, such as sameness

and class membership, in a logically rigorous way. Data can be enriched using

metadata from controlled vocabularies. These features enable tripleware to make

inferences and integrate data from disparate sources.

THE PROBLEM WITH RELATIONAL DATABASES

Structural Commitment to Capture Meaning

In the world of relational databases, which has shaped the field of IT for the past

40 years or so, things are not so simple. Data are stored in tables, and it is the

structure of the tables that defines meaning. Without the structure, the data is

meaningless. If you see the number 27 in a database or spreadsheet, you can

deduce that it indicates someone’s age by looking at the column header. The

table structure, including the headers, tells you what is what. The consequence

of this method of representing meaning is that before you can record any data,

you have to define a structure first. The same meanings can be reflected in a

literally endless amount of structures: you can represent age as column 5 of

10

table 3, but just as well as column 3 in table 5. The chance that the same

meaning is represented in the same way in two spreadsheets — let alone two

databases — is infinitesimally small. There are no rules to predict the data

structure from what the data means.

Let us discuss some examples to illustrate the problem. Take as point of

departure the table presented in the previous chapter. Probably, in a database

we would add a primary key field (denoted PK) with a unique number assigned

by the database, as follows:

This is one way of representing our data in a relational database. Alternatively,

we could promote the concept of “place of birth” from attribute to a separate

entity. A foreign key field links each instance of Place of birth to the

corresponding Employee. We now have two tables. As a third alternative,

however, we could also model Place of birth as a relation between Employee and

yet a new entity, Municipality. The relation table Place of birth links the two using

a foreign key into each.

The choice between representing place of birth (1) as attribute or (2) as an

entity or (3) as a “relation table” is unavoidable in designing the database

structure: it has to be made, one way or another. To represent the handful of

triples we have seen so far, there are many of such choices. Take the relation

“works for” which we used in our first triples in this paper. The same three

alternatives are possible. Similar reasoning holds for the triples asserting that

Moneypenny is a secretary and that the set of secretaries is a subset of staff.

Representing tree structures of types and sets in databases is a notorious source

of complexity, with many possible solution patterns.

11

The amount of valid but distinct structures grows exponentially in proportion to

the number of relations in the underlying vocabulary. This causes a combinatorial

explosion of valid alternatives. Real-world databases contain dozens, if not

hundreds of tables, each having handfuls of attributes, primary keys and foreign

keys. And each such database only represents one structural possibility out of a

million valid alternatives. Once you have chosen the structure, however, you are

committed to it. This is called structural commitment.

Difficulties Resulting From Structural Commitment

Structural commitment is how relational databases handle meaning. It gives rise

to four important problems. First, you have to understand the structure to be

able to use the database. You cannot retrieve Moneypenny’s place of birth

without knowing in which tables these two data points reside and how they are

connected. This is in stark contrast with a triple store: there, you have to know

which URIs are used to refer to Moneypenny and place of birth, but there is no

such thing as a data structure beyond that that you need to understand.

The problem of having to be aware of the exact structure of a database is

exacerbated by the second problem: structures tend to become large and

complicated, so that it becomes almost impossible to find your way. As long time

Linked Data pioneer and visionary Dave McComb quips: if the databases in your

enterprise contain more than 100,000 distinct attributes, the result is

unstructured data.

The third problem is that relational databases are resistant to change. There are

three reasons for this:

 Changing a complex structure in one place often leads to a change in

some other place, and so on: the rippling effect

 Application programs have to reflect the structure of the database, so they

need to change as well

 The data in the database needs to be migrated from the old to the new

structure

The third point, data migration, poses a serious and often underestimated

challenge in terms of effort and money. Changing the structure with two tables in

the figure above to the structure with three tables, we need to unload the data

from the old database, convert them to match the new structure with three

tables, and load them into the new database. In real world situations, this is

often a costly, error-prone activity. Moreover, the application software that uses

the database needs to be refurbished so that it can use the new structure,

12

adding project dependencies to the challenge. In many IT-projects, migration is

a serious cost component.

The fourth problem stemming from structural commitment is that in order to

combine data from different databases, it is necessary to translate one structure

to the other first. Next, you have to translate the data to the translated

structure. This is so expensive that it is only done when really, really necessary.

The Relational Database Paradox

The problems associated to structural commitment have led software architects

to the consensus that databases should as much as possible be isolated from the

outside world using a layer of software. This layer of software provides data

services to the outside world and concentrates the structural commitment

inherent in using the database in one spot.

This is a good thing. However, while a services layer concentrates the problems

in one spot, it doesn’t solve them. Moreover, the architectural pattern leads to a

paradox. In the early days of relational databases, most data used to reside

inside application software. One of the most important selling points of relational

databases was: free your data from the confines of an application. Put the data

in a central repository available to all stakeholders across the organization. Let

different applications share the same data.

Hiding the database behind a services layer makes the data less responsive to

varying needs. Data can be used only through a limited set of services — much

more limited than the set of queries one could run against the database directly.

Without a service layers, combining relational databases over the internet would

be extremely cumbersome because of the difficulties that arise from mapping

one complex structure onto another. But with a service layer isolating the

databases, database federation becomes completely impossible. The only way

data from different sources can be combined is through a limited amount

services, architected at design time, long before the system is ready for use.

The relational database paradox is that it wants to free data from the bounds of

application programs, but has to lock the data up into a service layer to alleviate

the problems stemming from its structural commitment.

THE PARADIGMS COMPARED

Let us now compare Linked Data and the relational database. The most basic

difference is that Linked Data relies on referential semantics instead of structural

13

commitment to give data meaning. Secondly, like other Web technologies,

Linked Data is fully and rigorously standardized at the technology level.3 From

these two points, most of the other differences follow automatically. There are

also some similarities, however.

Similarities

An important similarity is that in both approaches, access control is based on

partitioning the data. In relational databases, tables constitute the main vehicle

for partitioning. Triples can similarly be partitioned into named graphs. For

example, we could say that name and birth date triples belong to “personal data”

Access control can then be based on this named graph. As you may have

guessed, named graph membership is simply another triple and can be changed

dynamically, offering more flexibility. At the core, however, access control is

based on the same approach.

Another similarity pertains to the way restrictions can be imposed. Using RDFS

and especially SPIN — the standard briefly mentioned earlier — it is possible to

express logical constraints on RDF data, such as cardinality constraints. We could

add triples to our Secret Service triple store stating that a resource of type

“Person” can have one and only one birth date, but may bear a “worksFor”

relation to zero or more resources of type “Organization”. However, triple stores

do not enforce such constraints. Thus, the storage level stays flexible and

accepts any data — ahead of development of schemas and ahead of validation of

the data constraints once they have been put in place.

Does this mean that using a triple store will inexorably lead to chaos? On the

contrary. Data can be validated for conformance to constraints after it is written

into a triple store. Exceptions can be identified and either fixed through

transformations or reported on. While triple stores may not do such validation

natively, widely used tripleware products add this capability and work directly

with triple stores. With such products, not only data constraints can be expressed

in RDF, but also (other) business rules. With this, applications can query not only

for data, but also for rules and constraints. Tripleware can help enforce business

rules making custom application code thinner, faster to develop and more

responsive to change.

3 SQL is an ISO standard, but implementations are not always consistent with the

standard. See http://troels.arvin.dk/db/rdbms/. More important, however, is the fact that

Linked Data is standardized all the way from persistence behavior up to and including

interaction between the persistent store and clients, exchange over the Web using Web

protocols, semantics of inferencing, and so forth.

http://troels.arvin.dk/db/rdbms/

14

In addition, it always possible to control what is written into the triple store. The

business rules governing constraints on data may be enforced in the application

software through which users enter data. This is not much different from how

things work in the relational database world. Even though the structure of

relational database will prevent storing two birth dates for one person, the

application software must have its own awareness of the underlying business

rule, and guide the user in such a way that double entry is impossible. It is a

good software architecture practice to funnel incoming data through business

logic before storing it. In that sense, on the application side, there is not so much

difference between the two worlds after all.

Differences

It is on the data storage side that Linked Data makes a huge difference. With

Linked Data, the lack of structural commitment causes application software to be

loosely coupled to the data store. To see what this means, we discuss how this

solves the four problems with relational databases presented in the previous

chapter:

 To work with a database, you must understand its structure

 This structure is complex

 This structure is resistant to change

 Data in different databases cannot be combined without translating one

structure to the other

The first two are easy. As explained earlier, there is no such thing as a data

structure that you need to understand when working with Linked Data.

Therefore, there is no problem either of structures becoming complex and

difficult to follow.

Linked Data also solves the problem of inertia:

 You can simply add new triples to a triple store using existing or new URIs.

There is no rippling effect

 Application programs can remain as they are: they simply don’t “see” the

new triples, and continue to operate normally

 With Linked Data, new information does not lead to data migration

A real-world example of this is the Linked Data information platform for fire

fighters, provided by Netage.nl.4 It is developed in cooperation with the

4 I am grateful to Bart van Leeuwen, fire fighter at the Amsterdam Fire Department and

founder of Netage, for providing the information in this example.

15

Amsterdam Fire Department, and used by fire fighters across the world. The

platform is hooked up to a growing number of data sources. Fire fighters use a

so-called monitor — a piece of application software that selects and presents

data from the platform — to acquire actionable data about a location during

transport to the fire. On departure from the fire station, hardly more than an

address is known. Every bit of data added to that before going in may be crucial,

life-saving information: type of building, previous incidents, location of doors and

windows — to mention some examples. The platform is under continuous

development. Each time a new data source is added, a new monitor is created

that broadens the scope compared to previous versions. The old monitors

continue to work as they did before. When an older monitor is not accessed

anymore by users, it is simply taken off the air. A typical budget for upgrading

the platform with new data sources and creating a new monitor is 15,000.– Euro.

The methodology of continuously upgrading the data store and the applications

that use it would be completely impossible using a relational database — let

alone with that type of budget.

The fourth problem, that of combining data from different sources, is the raison

d’être of Linked Data. Triple stores are both technically and semantically

interoperable. We have seen how this works, and it is the basis for combining

data sources in the fire-fighting example above.

A REAL WORLD BUSINESS CASE

The claim that adoption of Linked Data reduces the cost of IT-change and the

combining of data from different sources by orders of magnitude is supported by

facts. We have seen one business case with numbers already in the previous

chapter: the fire-fighting example. In this chapter, we add a few more.

Introducing Authentic Data Sources

The Dutch legislation compels public sector organizations to maintain and use a

system of core registers. These contain so-called “authentic data” about citizens,

buildings, real estate values, incomes, organizations, vehicles, geographic

locations and more. When you move house all you do is register your new

address with the pertinent municipality. The act of registration causes the

authentic data source containing your residential address to be updated. Tax

authorities, agencies handing out benefits and other governmental bodies will

automatically send mail to your new address. The idea behind this system of

authentic sources is that the basic elements of information management by the

16

government are of a legally guaranteed quality level and are available in one

unique repository: the authentic source. The data in the different authentic

sources are linked. The so-called BSN-number uniquely identifying your person

links you to the car registered to you.

Currently, the system is based on relational database technology and SOA-based

web services. One architectural pattern used in organizations that work with

authentic data is that the consuming agency builds a local repository for storing

the data they need in the structure they need, as part of their IT-landscape. For

each piece of data — a person, a car —, they register a subscription. Each time

the data is updated in the authentic source, the agency receives a web service

call triggering an update in the local store. In the process, the data exchanged is

translated from one structure to another. This is a costly way of sharing data.

Cost Reduction through Linked Data

In a recent article, Ria van Rijn and Arjen Santema point out that the budget of

Logius, the agency responsible for hosting, maintenance and administration of

the authentic sources, is in the order of magnitude of 50M Euro per year.5 This

does not include application software for data entry and maintenance of the data

content, which is the responsibility of other organizations, such as municipalities.

This does also not include the expenditures that organizations consuming the

data have to make — these latter must be massive.

With Linked Data, completely different integration patterns spring to mind. Van

Rijn and Santema argue convincingly that using Linked Data would lead to a cost

reduction of tens of millions of Euro’s per year.

Realizing the Business Case: Recent Developments

In fact, the Dutch government is already setting steps in the direction of making

a transition, showing that the business case has more than theoretical value.

One initiative is the development of a national URI-strategy for Linked Data. This

is a set of conventions for minting URIs. The current state is described in a

recent article, and the first proposals have been submitted to Bureau Forum

5 Ria van Rijn and Arjen Santema (2013), “Een nieuwe wereld, een nieuwe

informatiearchitectuur.” Available in the Pilod book, pp 211-221.

http://www.pilod.nl/doc/boek2.pdf

17

Standaardisatie, the national standards committee in the Netherlands.6 The

hierarchical nature of domain ownership underpinning the structure of the URI

requires careful design of naming conventions. The government of the UK, the

first public administration to adopt Linked Data at a significant scale, is currently

revising its strategy, which is not free from problems. Minting URIs is something

you want to get right at the start as much as possible.

Secondly, there are some interesting developments more directly related to the

system of authentic sources. The so-called Stelselcatalogus is a catalogue of all

the concepts used in these sources: street address, person, date of birth, house

number, vehicle ID, and so on. Recently, the first part of the 2.0-version of the

catalogue has gone life.7 It is fully based on Linked Data technology and mints

URIs for all the concepts that are part of the so-called semantic core of the

system. It links each of these to relevant legislation, which is also in the process

of becoming available as Linked Data.

Kadaster, the Netherlands’ Cadastre, Land Registry and Mapping Agency, has

already created an vocabulary representing the semantic core of the authentic

source under its authority, the so-called BRK. A Linked Data version of this

register will be launched soon. In a similar vein, the Ministry of Infrastructure

and the Environment has announced that it will make its authentic data available

as Linked Data as of 2015.

It is interesting to mention the fact that Stelselcatalogus 2.0 and the Kadaster’s

vocabulary overlap. The legal term for lot in Dutch is perceel. In the current

situation, there are two URIs referring to this concept: brk:Perceel (minted by

the Kadaster) and scbr:Perceel (minted by Stelselcatalogus).8 A next step could

be to deprecate one of the URIs and give preference to using the other. Or both

URIs can be upheld and one can be asserted to be the owl:sameAs the other.

6 See Hans Overbeek (KOOP) and Linda van den Brink (Geonovum), (2013) “Aanzet tot

een nationale URI-Strategie voor Linked Data van de Nederlandse Overheid.” Available in

the Pilod book, pp 178-190.

7 I am indebted to Joop Rasser, project lead of the Stelselcatalogus, for discussion. See

also the homepage of the Stelselcatalogus and the project wiki.

8 The full URI’s are http://brk.kadaster.nl/def/gegevenselement/Perceel# and

http://scbr.data.overheid.nl/brk/id/concept/Perceel. The first of these resolves to a URL

that locates a webpage that provides a textual description of the concept referred to. Put

differently, you can paste the URI in the address field of your browser and the

information is shown right away — which is considered good practice by many in the

Linked Data community. Textual information about the URI in the scbr-namespace can be

found here.

http://www.pilod.nl/doc/boek2.pdf
http://www.e-overheid.nl/onderwerpen/stelselinformatiepunt/stelsel-van-basisregistraties/stelselvoorzieningen/stelselcatalogus
https://wiki.stelselvanbasisregistraties.nl/xwiki/bin/view/Stelselhandboek/Project+Stelselcatalogus
http://brk.kadaster.nl/def/gegevenselement/Perceel
http://scbr.data.overheid.nl/brk/id/concept/Perceel
http://www.e-overheid.nl/onderwerpen/stelselinformatiepunt/stelsel-van-basisregistraties/stelselvoorzieningen/stelselcatalogus/begrippen/Perceel/vergelijken?registratie%5b0%5d=BRK&BRK%5b0%5d=Perceel

18

This shows no less than four important points. First of all, it is another

demonstration of the fact that overlapping ontologies can coexist without

problems. Secondly, it shows that — because of this — vocabulary development

can be done in a bottom-up fashion. You don’t have to wait until the whole world

agrees on one single vocabulary to be used exclusively. Third, it exposes once

again the importance of a national URI strategy, including clear statements as to

who owns which domains and is given the authority to mint which concepts.

The fourth point is more subtle. The system of authentic sources was architected

20 years ago. In a world view based on relational database technology, “11-11-

1921” is data, and “Date of birth” is metadata. At the time, it was only natural

that data were in the authentic sources, and a catalogue of metadata in the

Stelselcatalogus. As we have seen, with Linked Data there is no technical

difference between data and metadata. Therefore, the introduction of Linked

Data compels us to rethink the function and position of the Stelselcatalogus, and

the structure of the information contained in it.

Reflections

A business case for using Linked Data in the context of public administration is

easy to make. Massive amounts of data are created and shared between

different agencies. The network of organizations is large. The data travel in large

amounts through countless edges linking them. This alone will account for great

cost savings in transitioning to Linked Data.

In addition, the non-hierarchical nature of the organizational network prevents

simplistic solutions for agreeing on one standardized vocabulary for all domains.

To deal with this kind of complexity, it is much more effective to have many

vocabularies alongside each other. Linked Data is expressly designed to support

mixing and matching of metadata vocabularies. This adds strong qualitative force

to the business case.

When it comes to vocabularies, there is a lot of low hanging fruit to harvest. An

example is the Thesaurus of Legal Terms published by the WODC, the research

institute of the Ministry of Justice in the Netherlands. The thesaurus is regarded

as one of the best in its kind in Europe, because of its rich and fine-grained

structure. It uses the SKOS vocabulary, one of the most central RDF-

vocabularies around and expressly recommended by the W3C as the standard

representation vocabulary for thesauri. Publishing it in the form of Linked Data

will enable countless organizations in the legal domain to enrich their data and

make the data interoperable at the semantic level. Given that all the elements

are there except for the SPARQL-endpoint, this could be done at practically no

19

cost at all. There is no doubt that there are many more examples of high quality,

trustworthy vocabularies waiting to be used.

All this does not mean, of course, that the business case for Linked Data works

better within the public sector than elsewhere. Quite the opposite is true. We

have discussed the massive use of this technology in the domain of life sciences

and pharmaceuticals. The largest uptake of Linked Data is currently in industry

and research domains. A recent and quite spectacular case is the BBC: all

content for all its websites are served by a humongous triple store that serves up

to 2000 SPARQL-requests per second, with an up-time worthy of the reputation

of its owner.

MAKING THE PLAN COME TOGETHER

Linked Data will reduce the cost of modifying IT-systems and data integration by

orders of magnitude. It caters for realization methodologies that are simply

impossible with classical technology. We have seen how the Amsterdam Fire

Department has its data store enriched with new data, introducing new

information with new meanings. Yet, existing application software continues to

work as if nothing has happened.

Apart from reducing cost, this will enable organizations to take a more creative

stance to their IT-landscape. When changes can be made without much cost, it

becomes possible to try different alternatives and discover what works best. In

this way, change becomes a source of creativity instead of a destructive force of

disinvestment.

The transition to Linked Data can be made in a step-wise, non-intrusive fashion.

As the example of the Stelselcatalogus shows, Linked Data can peacefully coexist

with relational database technology. The transition will never be trivial, however.

While the technology is simple and solid, there are still enough challenges to

warrant a careful approach. When the technical challenges are met, one also has

to make sure due attention is given to the semantics of the information. Analysis

and modeling with Linked Data are just as important — if not more so — as with

relational database technology.

When Tim Berners-Lee invented Linked Data, he wanted to replace the Web of

documents by a Web of data. His dream was that the data in all repositories on

the Web could be combined and integrated in endless arrangements, without

barriers — technological, semantic or otherwise. The Linked Open Data

community is working hard to make this dream come true. The number of open

20

SPARQL-endpoints on the Web is currently experiencing an exponential growth

comparable to what happened in the early days of the Web of documents.

As a side effect of this call for information enlightenment, new architectural

patterns begin to emerge that will reduce the cost of IT-system inertia by orders

of magnitude. Perhaps, the next big wave of uptake of the technology will be in

the enterprise — not primarily to realize Berners-Lee’s vision, but to make

creative change possible. If that happens, it may be not so clear anymore what is

a side effect of what. Either way, change is in the air.

21

Acknowledgments

I am indebted for information and inspiration to many. Numerous points

mentioned in this paper derive from sometimes prolonged and always pleasant

conversations with Bart van Leeuwen (Amsterdam Fire Department and founder

of Netage), Marc van Opijnen (KOOP, Ministry of the Interior and Kingdom

Relations), Joop Rasser (ICTU), Hayo Schreijer (KOOP), Arjen Santema

(Kadaster), Hans Overbeek (KOOP) and Jan Verbeek (Be Informed). Thanks to

Erich Gombocz (IO Informatics) for enlightening me on the subject of

bioinformatics. I am indebted to Tomasz Adamusiak (Medical College of

Wisconsin) helping me getting the description of OntoCAT right. Special thanks is

due to Dave McComb (Semantic Arts), long time pioneer and visionary of Linked

Data and a great teacher on top of that. Following his workshops and seminars

has been an exciting way of getting introduced to the field.

About a year and a half after publishing the first edition, Irene Polikoff of

TopQuadrant drew my attention to some issues, leading to long, deep and

pleasant discussions. This resulted in a second edition with major improvements.

I am grateful for this support. Of course, any remaining errors are my own.

22

About Taxonic

Taxonic helps organizations creating more value from their

information flow. Linked Data-technologies are an essential

ingredient of that. We consult in technology selection, provide

expertise in tendering, and assist in the design, delivery,

implementation and exploitation of solutions.

About the author

As CEO of Taxonic, Jan Voskuil is responsible for answering

clients’ business challenges with innovative solutions. After

obtaining a PhD in theoretical linguistics, Jan worked for several

start-ups in the field of artificial intelligence. Before co-founding

Taxonic, Jan worked as senior solution architect at Logica and

was involved in several large-scale, high-profile innovation

programs.

T +31 (0) 88 240 42 00

info@taxonic.com

www.taxonic.com

kvk 54529190

rabobank 161959660

btw NL851339803B01

Taxonic BV

Janssoniuslaan 80

3528 AJ Utrecht

The Netherlands

